Pseudomonas oleovorans (P. pseudoalcaligenes)
Cultural characteristics
Biochemical characters
Phylum Proteobacteria, Class Gammaproteobacteria, Order Pseudomonadales, Family Pseudomonadaceae, Genus Pseudomonas,  
Pseudomonas oleovorans
Lee and Chandler 1941 emend. Saha et al. 2010.
- Pseudomonas oleovorans subsp. lubricantis Saha et al. 2010, subsp. nov
- Pseudomonas oleovorans subsp. oleovorans Lee and Chandler 1941, subsp. nov.

Pseudomonas pseudoalcaligenes  Stanier 1966.
According to Saha et al. 2010,
Pseudomonas pseudoalcaligenes Stanier 1966 is a
later heterotypic synonym of  
Pseudomonas oleovorans Lee and Chandler 1941.
Gram-negative, 0.5-0.8 / 1.2-2.5 µm, motile rods. When grown on agar, the cells are
almost coccoid, but the length increases during the exponential phase in broth.
Colonies have a typical fluorescence that is not imparted to the medium. Strictly
aerobic, optimal temperature 35 ºC, poor growth at 41 ºC. Grows on nutrient agar /
nutrient broth.
Isolated from soil, water & clinical samples (sputum, urine, sinus discharge,
cerebrospinal fluid) - rarely.
Pseudomonas oleovorans is isolated from oil-water
emulsions used as lubricants and cooling agents in the cutting and grinding of
metals. Apparently the organism lives on some normal constituent of the cutting
compound, probably the naphthenic acids, which act as emulsifying agents.
Opportunistic pathogen.
Possible cause of  meningitis or pneumonia (doubtful – admin note).
  1. Stanier R.Y.. In: Stanier R.Y., Palleroni N.J. & Doudoroff M.: The aerobic pseudomonads: a taxonomic study. Journal of General
    Microbiology, 1966, 43, 159-271.
  2. Saha R., Sproer C., Beck B. & Bagley S.: Pseudomonas oleovorans subsp. lubricantis subsp. nov., and reclassification of
    Pseudomonas pseudoalcaligenes ATCC 17440T as later synonym of Pseudomonas oleovorans ATCC 8062T. Curr. Microbiol.,
    2010, 60, 294-300.
  3. W.A. Cowlishaw, Margaret E. Hughes & H.C.R. Simpson Meningitis caused by an alkali-producing pseudomonad. J. clin. Path.,
    1976, 29, 1088-1090.
  4. Huertas MJ, Luque-Almagro VM, Martinez-Luque M, Blasco R, Moreno-Vivian C, Castillo F, Roldan MD. (2006) Cyanide metabolism
    of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochemical Society Transactions 34(Pt 1):152-5.
  5. S.F. Nishino and J.C. Spain: Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol. 1993
    August; 59(8): 2520-2525.
  6. P.D. Fiorella and J.C. Spain: Transformation of 2,4,6-Trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl. Environ.
    Microbiol., May 1997, 2007-2015, Vol 63, No. 5.
  7. Yoon-Dong Park, Hana Yi, Keun Sik Baik, Chi Nam Seong, Kyung Sook Bae, Eun Young Moon, and Jongsik Chun: Pseudomonas
    segetis sp. nov., isolated from soil. Int J Syst Evol Microbiol November 2006 56:2593-2595.
  8. George M. Garrity, Julia A. Bell & Timothy Lilburn: Order IX Pseudomonadales Orla-Jensen 1921 In:  Bergey’s Manual of Systematic
    Bacteriology, Second edition,Vol two, part B, George M. Garrity (Editor-in-Chief), 2005,  pp. 323-442.
  9. Xin, Yu-Hua, Zhang, De-Chao, Liu, Hong-Can, Zhou, Hui-Ling, Zhou, Yu-Guang Pseudomonas tuomuerensis sp. nov., isolated from
    a bird's nest. Int J Syst Evol Microbiol 2009 59: 139-143.
Can use free cyanide or cyano-metal complexes as nitrogen source. Can use nitrobenzene as the sole source of carbon. Can degrade
2,4,6-trinitrotoluene (TNT).

Positive results for oxidase, starch hydrolysis (negative for
P. pseudoalcaligenes). Fructose is the only carbohydrate utilized.
Can utilize glutarate, D-malate, mesaconate, ethanol, DL-arginine.
P. pseudoalcaligenes strains can utilize: acetate, L-alanine, caprate, caprylate, fumarate, L-glutamate, alpha-ketoglutarate,
lactate, L-proline, succinate, gamma-aminobutyrate, L-arginine, betaine, butanol, propanol, putrescine, butyrate, ethanolamine,
D-fructose, glycerate, beta-hydroxybutyrate, itaconate, L-leucine, L-malate, mesaconate, pelargonate, propionate, spermine & pyruvate.

Negative results for alkaline and acid phosphatase, egg-yolk reaction, H
2S production, indole production, lysine decarboxylase,
ornithine decarboxylase, starch hydrolysis, urease & lipase. Mannitol, gluconate, 2-ketogluconate are not utilized.
P. pseudoalcaligenes strains do not utilize: adipate, alpha-aminobutyrate, L-arabinose, D-galactose, m-inositol, D-mannose,
D-ribose, sucrose, trehalose, trigonelline, D-xylose, alpha-amylamine, L-aspartate, L-isoleucine, malonate, L-valine, azelate, maltose,
sebacate, starch, benzoate, butylamine, 2,3-butylene glycol, isobutyrate, citraconate, dodecane, D-glucose, glycolate,
p-hydroxybenzoate, mannitol, isobutanol, isovalerate, mucate, saccharate, levulinate, L-lysine, DL-norleucine, L-ornithine, D(-)-tartrate,
m-tartrate, L(-)-tartrate, tryptamine, cellobiose, citrulline, erythritol, hexadecane, hippurate, 2-ketogluconate, kynurenate, lactose,
maleate, pimelate, L-rhamnose, salicin, suberate, testosterone, L-threonine & D-arabitol.

Variable results for arginine dihydrolase, gelatin liquefaction, utilization of: aconitate, caproate, heptanoate, L-tyrosine, valerate,
beta-alanine, D-alanine, citrate, delta-aminovalerate, creatine, sorbitol, ethylene glycol, gluconate, glutarate, L-serine,
glycerol, glycine, D-malate, histamine, L-histidine & sarcosine.
(c) Costin Stoica
Culture media
Biochemical tests
Previous page