Antibiogram
Cronobacter dublinensis
Legend:  + positive 90-100%, - negative 90-100%, [+] positive 75-89%, [-] negative 75-89%, d positive 25-74% of strains
 
Indole
production
4-aminobutyrate
utilization
Dulcitol
utilization
Malonate
utilization
Melezitose
utilization
Maltitol
utilization
Lactulose
utilization
Turanose
utilization
Trans-
aconitate
utilization
C. sakazakii
-
+
-
-
-
+
+
+
-
C. malonaticus
-
+
-
+
-
+
+
+
+
C. muytjensii
+
d
+
+
-
-
+
+
d
C. dublinensis subsp. dublinensis
+
+
-
+
+
+
+
+
+
C. dublinensis subsp. lactaridi
+
+
-
-
-
+
+
d
+
C. dublinensis subsp. lausannensis
d
+
-
-
-
-
-
-
+
C. turicensis
-
+
+
+
+
+
+
+
-
C. universalis
-
-
+
+
+
+
+
-
-
C. condimenti
+
-
-
+
-
-
-
-
-
Differential characters between Cronobacter species:
Taxonomy
Morphology
Cultural characteristics
Biochemical characters
Ecology
Pathogenicity
References
Phylum Pseudomonadota (Proteobacteria), Class Gammaproteobacteria, Order Enterobacterales, Family Enterobacteriaceae,
Genus Cronobacter,
species:
- Cronobacter dublinensis subsp. dublinensis Iversen et al. 2008;
- Cronobacter dublinensis subsp. lactaridi Iversen et al. 2008;
- Cronobacter dublinensis subsp. lausannensis Iversen et al. 2008.

Comprises former
C. sakazakii biogroups 6, 10 and 12.
Gram-negative rods, 1-3 µm. Non-spore-forming. Motile.
Colonies on TSA incubated at 37 ºC for 24 hours are 2-3 mm in diameter, opaque,
circular and yellow.  In TSB, grows at 45 ºC (optimum 37 ºC), but not at 5 ºC. No
haemolysis is observed on sheep blood agar at 37 ºC.  Grows at pH 5-10 and in up to
7 % (w/v) NaCl. Facultatively anaerobic.
Subsp. dublinensis was isolated from an environmental sample obtained from a milk powder manufacturing facility.
Subsp. lausannensis was isolated from the basin of a water fountain.
Subsp. lactaridi was isolated  from a dried milk production facility.
Undetermined.
  1. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for
    Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov.,
    Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016;
    66:5575-5599.
  2. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H. Cronobacter gen. nov., a new genus to
    accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter
    malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov.,
    Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter
    dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol
    2008; 58:1442-1447.
  3. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H. The taxonomy of Enterobacter
    sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter
    sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov.,
    Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 2007; 7:64.
Positive results for arginine dihydrolase, catalase, citrate utilization, beta-galactosidase, indole production, malonate utilization, nitrate
reduction, ornithine decarboxylase, Voges-Proskauer test, acid production from L-arabinose, amygdalin, cellobiose, glucose, inositol,
mannitol, melibiose, rhamnose, and saccharose.
Can utilize alpha-D-glucose, beta-D-fructose, D-galactose, trehalose, D-mannose, melibiose, sucrose, raffinose, maltotriose, maltose,
alpha-lactose, 1-0-methyl alpha/beta-galactopyranoside, cellobiose, beta-gentiobiose, esculin, L-arabinose, D-xylose, glycerol,
D-mannitol, L-malate, D-glucuronate, D-galacturonate, 2-ketogluconate, N-acetyl D-glucosamine, arbutin,
DL-alpha-glycerol-phosphate, dihydroxyacetone, D-ribose, L-lyxose, pyruvic acid, D-gluconate, DL-lactate, succinate, fumarate,
DL-glycerate, D-glucosamine, L-aspartate, L-glutamate, L-proline, D- and L-alanine, and L-serine.

Negative results for gelatin hydrolysis, H
2S production, lysine decarboxylase, methyl red test, oxidase, urease, acid production from
adonitol,  D-sorbitol and 5-ketogluconate.
No utilization of  L-sorbose, alpha-L-fucose, D-arabitol, L-arabitol, xylitol, D-tagatose, D-sorbitol, adonitol, i-erythritol, 3-0-methyl
D-glucopyranose, D-saccharate, mucate, L-tartrate, D-tartrate, meso-tartrate, tricarballylate, 5-ketogluconate, L-tryptophan,
phenylacetate, protocatechuate, 4-hydroxybenzoate, quinate, gentisate, 3-hydroxybenzoate, benzoate, 3-phenylpropionate,
m-coumarate, trigonelline, betaine, histamine, caprate, caprylate, L-histidine, glutarate, 5-aminovalerate, ethanolamine, tryptamine,
itaconate, 3-hydroxybutyrate, propionate, L-tyrosine, alpha-ketoglutarate, sodium pyruvate, amygdalin, D-serine, D-threonine, inulin,
L-alaninamide, L-glucose, L-homoserine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-valine, mannan, tyramine,
glucose 1-phosphate and glucose 6-phosphate.

Subsp. dublinensis can utilize melezitose, malonate, myo-inositol, turanose, trans-aconitate, cis-aconitate, maltitol, putrescine,
lactulose, 1-0-methyl alpha-D-glucopyranoside, palatinose and 4-aminobutyrate.
Subsp. lausannensis can utilize transaconitate, cis-aconitate, 1-0-methyl alpha-D-glucopyranoside, palatinose and 4-aminobutyrate.
Variable utilization of putrescine.
Subsp. lactaridi can utilize myo-inositol, maltitol, trans-aconitate, cisaconitate, 1-0-methyl alpha-D-glucopyranoside, putrescine,
lactulose, 4-aminobutyrate and palatinose. Variable utilization of turanose.
(c) Costin Stoica
Encyclopedia
Culture media
Biochemical tests
Stainings
Images
Movies
Articles
Identification
Software
R E G N U M
PROKARYOTAE
Previous page
Back